Evolutionary Genetics

Darwin and Genetics

- Darwin studied snapdragons
 - Came up with an incoherent theory of genetics
 - Blending inheritance
 - Lamarckian
 - Pangenesis
- Mendel studied peas

Gregor Mendel

- Austrian monk
- Did experiments from 1856 – 1863
- Published his findings in obscure journal
- Mendel's laws rediscovered in 1900
 - Mendel given credit
- Rise of biometricians
 - Focus on variation
 - Downplayed Mendel
- Reconciliation during the Modern Synthesis
 - Polygenic inheritance

Genetics Review

- Gene
- Locus
- Allele
- Genotype
- Phenotype
- Homozygous
- Heterozygous
- Dominant
- Recessive
Mendel’s Laws

- Law of Segregation
 - For each trait there is a gene with two copies (alleles)
 - Alleles separate during gamete production
- Law of Independent Assortment
 - Loci are independent
 - Doesn’t work if genes are linked

Mendel’s importance to evolution

- Particulate inheritance
 - Collapse of blending
 - Blending would make natural selection untenable

DNA

- Polymer of nucleotides
- Deoxyribose, base, phosphate group
- Pyrimidines (cytosine [C], and thymine [T])
- Purines (adenine [A], guanine [G])
- Antiparallel strands held together by H bonds
- A – T (two H bonds), C – G (three H bonds)

DNA vs. RNA

- DNA
 - double helix
 - Relatively stable
- RNA
 - Single strand
 - Unstable
- Few RNA-based lifeforms
DNA to Proteins

- Portion of DNA unzips
 - An RNA transcript is produced
 - Complementary base pairing except uracil (U) for T
 - Messenger RNA (mRNA)
 - Ribosomal RNA (rRNA)
 - Transfer RNA (tRNA)
 - microRNA

mRNA to Protein

- Codons
- 3rd position wobble

Genetic variability

- Crossing over
 - Creates new combinations of alleles at different loci
Mutations

- Ultimate source of variability
- Base substitution
 - Transitions
 - One purine to another
 - One pyrimidine to another
 - Transversions
 - Purine to a pyrimidine
 - Pyrimidine to purine
 - Silent or synonymous mutations
 - Missense mutations
 - Nonsense
Fig. 4. Best estimate phylogeny based on combined analysis of cytochrome b and c- myc. Topology is the majority rule consensus tree from the combined ML bootstrap analyses (i.e., nodes with support below 50% are collapsed). Numbers above branches are ML bootstrap values.

Aneuploidy

- The result of nondisjunction
Polyploidy

Mutations are random

• Mutations are random!
• Mutations are random!
• Mutations are random!

Mutations and fitness

• Generally classified as
 – Beneficial
 – Neutral
 – Deleterious
• However fitness is a continuous trait
• The frequency of each type of mutation depends on the context
Mutation and Fitness

- The frequency of each type of mutation depends on the context
- In general, most are deleterious or neutral
- In stable environment, beneficial mutations are rarer
- In changing environment, greater probability of having beneficial mutations
 – Could be the same mutation that would be deleterious in a stable environment!!!